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Abstract. The sequential quadratic programming method devel oped by Wilson, Han and Powell may
fail if the quadratic programming subproblems become infeasible or if the associated sequence of
search directionsis unbounded. In [1], Han and Burke give a modification to this method wherein the
QP subproblem isaltered in away which guarantees that the associated constraint region is nonempty
and for which a robust convergence theory is established. In this paper, we give a modification to
the QP subproblem and provide a modified SQP method. Under some conditions, we prove that
the algorithm either terminates at a Kuhn—Tucker point within finite steps or generates an infinite
sequence whose every cluster is a Kuhn=Tucker point. Finally, we give some numerical examples.
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1. Introduction
We consider the following nonlinear programming problem

mlnf(ac),

11
st. g(z) <0, -

where function f : R* — R'and g : R* — R™ are al continuously differen-
tiable. The SQP method generatesa sequencez* converging to the desired solution
by means of solving the quadratic programming problem

. 1
min<y f(z)d + EdTHd,

st. g(z) +¢'(z)d <0, 1.2
de R",

iteratively, where H € R™*™ is symmetric positive definite. The iteration then has
theform

(I,‘k+1 = :Ek + Apdg,

where d;, solves(1.2) and A\, isastep length chosen to reduce the value of amerit
function for (1.1).
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The SQP method may fail if the quadratic programming subproblems (1.2)
becomeinfeasible or if the associated sequence of search directionsis unbounded.
In[1], Han and Burke give a modification to this method wherein the QP subprob-
lem (1.2) isaltered in away which guaranteesthat the associated constraint region
is nonempty for each z € R™ and for which a reasonably robust convergence
theory is established.

Our methodissimilar to themethod of Burkeand Han [1] inthat it can overcome
some difficulties associated with the infeasibility of the QP subproblems (1.2). In
this paper, we give a modification to (1.2) and provide a modified SQP method.
Under some conditions, we prove that the algorithm either terminates at a Kuhn—
Tucker point within finite steps or generates an infinite sequence whose every
cluster is a Kuhn—Tucker point.

In [10], Martin proved that every Kuhn—Tucker point of (1.1) isagloba mini-
mum of (1.1) if and only if Problem (1.1) isKT-invex. Therefore, if Problem (1.1)
isKT-invex, then the proposed algorithm in this paper either terminates at aglobal
minimum of (1.1) within finite steps or generates an infinite sequence whose every
cluster isagloba minimum of (1.1) under some conditions.

This paper is organized as follows. In Section 2, the concept of pseudo direc-
tional derivativesis given. Section 3 gives some lemmas. In Section 4, we discuss
the modified QP subproblems. In Section 5 the proposed agorithm is stated. The
global convergence theory for the method is presented in Section 6, and some
numerical examplesare given in the last section.

The notation that we employ is standard. However, a partia list of definitions
is provided for the reader’s convenience.

@D f'(zid) =limyo(f(z + Ad) — f(z))/A
(2) ¢'(z) isthe Frechet derivative of g at .

(3) Let|| - || denotethe maximum normon R",i.e. ||z||c := max{|z;| : j =
17 27 T '7n}

(4 LetM={1,2---m},N={12---n}, e=(1,1,---, )T € R™.

2. Continuous Approximation of Directional Derivatives

Let

O (z) = max{g;(z) : j € M U{0}}. (2.1)
Then the directional derivatives of ®(z) in any directiond € R" is

o' (z;d) = } ggé){wj (z)"d}, (2.2)
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where Io(z) = {j : g;(z) = ®(z), j € M U{0}}.

In general, ®'(x; d) is not continuous. In [4], M. S. Bazaraa provides the fol-
lowing continuous approximation of ®'(z; d)

O*(z;d) = max {g;(z) + vg;(z)"d} — &(x), (2.3)
J€lo()

®*(z; d) are called pseudo directional derivativesof ®(x) at = in the direction d.
It can be proven that ®*(; d) isacontinuous function on R™ x R™.

LEMMA 2.18.  For any z,d € R™, we have

*(x;d) > @' (x;d) (2.4)
and there exist § > 0 such that

O*(z;td) = ®'(x;td), Vt € 0,d]. (2.5)

LEMMA 2218l For any z € R", ®*(z;-) is a convex function on R™.

3. SomelLemmas
Let
U(z) = max{g;(z):j € M}. (3.1

For all z,d in R™, let U*(x; d) denote the following first-order approximation to
U(z +d):

U*(x;d) = max{gj(z) + vg;(z)"d:j € M}. (3.2)
Let the functions ¥ (z, ), ¥9(x, o) : R® x R — R be defined, for all ¢ > 0, by
U(z,0) = min{*(z;d) : [|dlw < o} (33)

¥O(z,0) = max{¥(z,0),0}. (3.4)

REMARK. (3.3) is equivalent to the following linear programming, which we
denoteby LP(x,0)

min{z : g;(«) + vg;()"d < 2,5 € M, |ld|| < 7}
Let

(x,0) —U(z), (3.5
O(z,0) — U (). (3.6)
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Let the set F' be defined by

F={z:gj(x)<0, jeM}={z:¥(x) <0} (3.7)
and let F'° denote the complement of F, i.e.

F¢={z:¥(x)> 0} (3.8)
DEFINITION 3.1, The Mangasarian—Fromowitz constraint qualification

(MFCQ) is said to be satisfied at a point z € R™, with respect to the underly-
ing constraint system g(x) < O, if thereisaz € R™ such that

voi(z)Tz <0, ie{i:gi(z) >0, i € M}.
LEMMA 3.1. For all z in F¢, if the MFCQ is satisfied at z. Then for all o > 0,
we have
f(z,0) <O.
Proof. Let
I(z)={i:gi(z) >0,ie M}.

Foral x € F°and o > 0, by Definition 3.1, thereexistsd € R™ and ||d||» < o
such that

gi(z) + vgi(z)"d < gi(z), i€ I(z),

gi(z) +vgi(z)Td <0, ieM \ I(z).

U*(z;d) < U(x).
Hence

U(zr,d) < ¥(z), ie O(z,d) <DO0. 0
LEMMA 3.2Bl,  ¥(z,0) : R* x Rt — R iscontinuous.

COROLLARY 3.3. %z, 0), 6(z,0) and@°(z, o) areall continuouson R™ x
R

LEMMA 34. For all zin F¢,o > 0,if 8(z,0) < 0, then 6%(z,5) < 0.
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Proof. For al z € F°, we have ¥(x) > 0. By (3.4), (3.5) and (3.6), we have
0°(z,0) = ¥O(z,0) — U(z)
= max{¥(z,0) — ¥(z), ~¥()}
= maX{O(:L‘, U)a —\I/(I)}
< 0.

4. TheModified SQP Subproblems
Givenz € R" and o > 0, we define D(z, o, 3) to be the set

D(xﬂo—’ﬁ)
={d € R": gj(z) + vgj(z)"d < ¥(z,0), je€M, |ds<p}

where 5 > o. If d* € R" isthe solution to LP(x, o), then d* € D(z,0,3). SO
D(z, 0, 3) isnonempty. We now describe the modification to the subproblem (1.2).
The subproblem (1.2) is simply replaced by the convex program Q(z, H, o, 3)

. 1
miny f(z)Td + EdTHd,
st. gj(z) + vgi(z)Td < ¥0z,0), j€ M,
ldllc < B.

These convex programs have the following properties.

LEMMA 4.1 Letz e R",0< o0 < g,andH € R"*™ besymmetric and positive
definite. If the MFCQ is satisfied at x, then
(1) The convex program Q(z, H, o, 3) has a unique solution d where d satisfies
the following K-T conditions: There exist vectors U = (ug, up,- - -, um)?, V =
(v1,v2,- -~ v,)T and L = (Ig,lp,---,1,)" suchthat

@ gj(x) +vgj()'d < Vz,0), j€M, |dl|o<p,

() U>0, V>0, L>0,

© vf(z)+Hd+g(x)TU+V —-L=0,

(@ Xi-yuilgi(z) +vgi(z)"d— ¥z, 0)) =0,

VT(d—pe) =0, L"(—d — Be) =0.

(2 If d =0 isthesolutionto Q(x, H, o, 3), then z isa K-T point of (1.1).

Proof. (1) Since H is symmetric and positive definite, this follows from the
elementary theory of convex programming.
(2) Suppose that ¥%(z, o) > 0, we have that z € F*¢. By Lemma 3.1, we have
0 ¢ D(z,0,3), which contradictsthat d = 0.
Hence

¥O0(z,0) =0.
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By (1), we havethat = isaK-T point of (1.1). O

LEMMA 4.2. Forall x € F¢,0< o < . Ifthe MFCQ is satisfied at «, then for
alde D(z,0,0), wehave

d*(z;d) < 0%(z,0) < 0.
Proof. Forall xz € F¢, ®(z) = ¥(z). Foral d € D(x, o, 3), we have
@ (i) = max {;(r) + v;(@)" d} — V()
< U0z, 0) — U(x)
= 0%z,0) <0,
where I(z) = {j : gj(z) = ¥(z), j € M}. O
LEMMA 43. ForalzeF, 0<o<f, de D(z,o0,[3), wehave
®*(x;d) = 0.

Proof. For al =z € F, we have that ¥%(z,0) = 0 and ®(z) = 0. For all
d € D(z,0,0), we have

9i(2) +vg;(2)Td <0,j € M.

Hence
*(z;d) = max {g;(z) + vg;(x)'d} — ¥(zr) =0
j€lo(z)
where Io(z) = {j : gj(z) = 0,5 € M U{0}}. O
5. Algorithm

Now we state the basic algorithm as follows.

Algorithm A.

Initialization: Choose g € R", a0 > 0,6 > 0,0 < 0y < 0, < B,00 €
[01,0.], Bo € (00, 5], ¥ acompact set of symmetric and positive definite matrices,
Hpe .

Have (z;, oy, H;, 0, 5;), obtain (z;41, aiy1, Hiy1, 0411, Biy1) asfollows:

(1) Compute (i, 03), ¥0(x;,04).
(2) Let d; be the solution to the convex program Q(z, H;, 04, 3;). If d; = 0,
stop.

(3) If Vf(ail)sz + Olz'(l)*(:L‘Z'; dl) < —d;rHidi, set a1 1= oy; otherwise set

i sz' dTHidi
v f(z)"d; + d! ,2ai}.

i ‘= Mmax
i+l { —®*(z4;d;)
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(4) Set Tiy1 = x; + Nd;, where \; € [0, 5] and satisfying

Pai+1($i+l) < Pai+1 (]71 + Adi) + €,

min
0<A<O
where {¢; } is asequence of nonnegative numbers satisfying

o
Z €; < 0Q.
=0

(5) Choose Hi 1 €%, 0441 € [o1,04], Biy1 € (0ig1, ]

REMARKS. (1) The procedure for choosing the step length in step (4) of the
Algorithm A wasintroduced in [2].
(2) The merit functionin step (4) is

P,(z) = f(z) + a®(z).

(3) In step (5) one is allowed to adjust the parameters o; and ; iteratively.
Therefore it is possible to incorporate a trust region like strategy. However, our
proof theory does not alow the radius of these trust regions to either decrease to
zero or become unbounded.

6. Global Convergence

In this section we establish the global convergence of Algorithm A.
LEMMA 6.1. Letd € R" be the solution to Q(z, H,o,3) for some z € R"

and some symmetric and positive definite matrix H € R™*". Then the directional
derivative P/ (z; d) satisfies the inequality

Pp(a;d) < v f(2)"d+ a®*(x;d)
< —d'Hd - (i uj> 0°(z,0) + ad*(z;d), (6.1)
j=1

whereU = (uq, up, - - -,u,) ! isthe Lagrange multiplier of Q(x, H, o, 3).
Proof. If d = 0, theresult holds, trivially. Thus, supposethat d # 0, by Lemma
2.1, we have

Pl (z;d) = vf(x)Td + a®'(z;d)
< vf(2)ld + ad®* (z;d).
By Lemma4.1, we have

vf(z)=—[Hd+ 4 (z)'U +V - L].
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Hence,

Pl (z;d) < —dTHd—i—in: uj(g;(z) =00z, 0)) = B(V+L) e+ al*(z; d)
j=1

< —dTHd + (i u]-> (T(x) — ¥z, 0)) + a®*(z; d)

j=1
= —d"Hd - (Z uj> 0°(z,0) + ad®*(z; d). O
j=1
REMARK 6.1. By Lemma 6.1 and observations made in the previous section,
step (1), (2) and (3) of the Algorithm A assure us that

P! (z;d)

Qi1

Itisnot difficult to verify that the criteriafor specifying A; in step (4) are consistent.

THEOREM 6.1. Supposethat the MFCQ issatisfiedat g € R™. Let o; > Oand
set F:= {z : g(z) < 0}. Then thereisa neighborhood N (zg) of o such that
(1) the MFCQ issatisfied at every pointin N (zo),

(2) ifxg € F,then ¥9(x,0) = Ofor all z € N(zg),0 > 0y, and

0
0 ($7 O-) < 1’
O* (z; d)

for all z € N(xzo) \ F, o > oy, whered isasolution of Q(x, H, o, 3),
(3) ifxp e F,then

Sup{iu] :HGE, IGN(IIJO), O'G[O-Z,O-r]a BG(U,B]} < o0,

i=1

where ¥ C R™ " is any compact set of symmetric positive definite matrices and
O<o <o <p.
Proof. The proof of thistheorem issimilar to that of Theorem5.1in[1]. O

COROLLARY 6.1. Let zo € R" be such that g(zo) < 0, and the MFCQ is
satisfied at zg. Also let 0 < 07 < 0 < [ and let 32 be a nonempty compact set of
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n X n Symmetric positive definite matrices. There then is a neighborhood U of g
and a constant X > 0 such that

Vi@ ld+dHd  (S5tau,) 0%, 0)
0< —(I)*((If;d) < (I)*(x;d) <K,

for all (xao-alga Ii) eUx F(Ulao-raﬁ) X 3 Where]:‘(o-lao-hﬁ) = {(O-aﬁ) NS
[O-lao-r]aﬁ € (07/8]}

LEMMA6.2. Letz, — =z, H, — H, 0, — 7, B, — [.Thend, — d,
wheredy, isa solution to Q(xy,, Hy, o1, B) andd isa solutionto Q(z, H, 7, ).

Proof. Supposethat {d;, } doesnot convergeto d, then there existsasubsequence
{ds} C {d;} that convergesto d’ # d. By Corollary 3.3, we have

WO(z,,0,) — VT, 5) (s — o).
Foral d € D(z,7, ), thereexists d,,, € D(zs, 0, 3s) such that
dp —d (M — ).

Sinced, isasolution to Q(zs, Hy, 0s, 35), We have

1
Zd" H.d,,.

1
Vf($S)Tds + édszds < Vf($S)Tdm + >%m

Lets — +00, m — +00, We have
AT g 1 1T 57 o T 1 TTr
vi@'d +5d" Hd < v (@) d+ 5d Hd.
This contradictsthat d isthe single solutionto Q(z, H, 7, ).

THEOREM 6.2. Assume that the the MFCQ is satisfied. Then, any sequence z,
generated from the algorithm A either terminates at a Kuhn—Tucker point of (1.1)
or any accumulation point is a Kuhn—Tucker point of (1.1).

Proof. If the sequence {xz } terminates at 7 finitely, by Lemma4.1, Z isaK-T
point of (1.1). Thuswe assumethat {z } isaninfinite sequence. Let 7 be a cluster
point of {z;}. Thereis no loss of generality in assuming z, — =, H;, — H,
or — @, 3 — (3. By Corollary 6.1, thereis a constant o > 0 such that

ap<a k=12---.

Thereisno loss of generality in assuming oy = aoforal k =1,2,---. Let d; be
asolutionto Q(zy, Hy, ok, Br) and d asolution to Q(z, H,7,3), by Lemma6.2,
wehaved, — d.If d = 0,thenT isaK-T point of (1.1) by Lemma6.2. Suppose
that

d 0.
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Let X € [0, 6] be chosen such that

P+ Xd) = min Po(T + \d).

By Remark 6.1, we have

Po(T + X d) < Po(T).

Since
Ty + M — T+ Nd,
it follows that, for sufficiently large &, we have
Po(zp + i) 4 8/2 < Po(T). (6.2)

However, by
Po(wpy1) < Polzi) + e, D6 < B/2,
i=k
for sufficiently large k£ we have
o
Pa(f) < Pa($k+l) + Z €k

1=k+1

o0
< min Py(z, + Mdi) + €, + €;
0<A<S a( k k) k i:zk;l i

< Po(zr, + Mdy) + B/2,
which contradicts (6.2). Hence,
d=0,

and 7 is a Kuhn—Tucker point of (1.1). O

DEFINITION 6.19.  Problem (1.1) is said to be KT-invex, if there exists a
function~ : R™ x R™ — R"™ suchthat x,u € F', then

@ f(z) = fu) = f ()" h(z,u) >0,
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where F' isthe feasible set of Problem (1.1).

In[10], Martin proved that every Kuhn—Tucker point of Problem (1.1) isaglobal
minimum of (1.1) if and only if Problem (1.1) is KT-invex. Therefore we have:

COROLLARY 6.2. Assume that the MFCQ is satisfied. If Problem (1.1) is KT-
invex, then any sequence {z; } generated from the Algorithm A either terminates
at a global minimum of (1.1) or any accumulation point is a global minimum of
(1.2).

7. Some Discussionsand Numerical Examples

In this section we discuss further refinements of the algorithm proposed above to
accommodate practical calculations, and give some numerical examples to show
the success of the proposed method.

(1) Updating of H; is most effectively done by the quasi-Newton methods. The
matrix H; isintended to be an approximation of the Hessian of the Lagrangian

L(z,A) = f(z) + Y Nigi(z)
-1

at the point (z, \) = (z;, A;). The matrix H; is updated by the BFGS formula[9].

(2) If ||d; || is sufficiently small, the current point z; is considered to be a Kuhn—
Tucker point of (1.1), and the algorithm stopsin step 2.

(3) An equality constraint k() = 0 existsin the origina problem, it is most
easily handled as two corresponding inequalities h(z) < O and h(x) > 0, and we
can apply the above algorithm.

(4) An example is given in the following in order to demonstrate situations
in which the algorithm proposed in this paper succeeds while the SQP method
developed by Wilson, Han and Powell can fail if theinitial value of x isset to 3.

min zx,
st. z <1,
7% > 0.

NUMERICAL EXAMPLES. Finaly we show the behavior of Algorithm A on
some typical test problems. In the experiments below, the algorithm parameters
wereset asfollows: ag = 100,6 = 1,0, = 1,0, = 2,3 =3and Hy = I € R"*™.
A C test program of Algorithm A with BFGS update was written and applied to
the following problems.

EXAMPLE 1.

: 1 1
min f(z) =z — §+ ECOSZ:E,
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Table 1. Computational results for Example 2

k 0 1 2 3 4 8

1 2 1.5762621 13411281 1.2534775 1.2399127 1.2247615
2 2 1.5762621 13411281 1.2534775 1.2399127 1.2247615
T3 2 1.5762621 13411281 1.2534775 1.2399127 1.2247615
T4 2 1.5762621 13411281 1.2534775 1.2399127 1.2247615
f 32 24693 12.9402 9.874752 0454192  9.000488

Table 2. Computational results for Example 3

k 0 1 3 5 9

x1 25 2.136197 1.397261 1.260670 1.250843
T2 15 0.8936609 0.8288156 0.7419351  0.7500085
T3 0 0.3638035 1.102739 1.23933 1.249157
T4 0 0.6063391 0.6711844 0.958065  0.7499915
f 140625 5476474  3.603782 3.516288  3.515627

st. 2 > 0.

z* =0, f(z*) =0.

If we use Algorithm A, then the solution can be obtained at the 2nd iteration
under initial point zo = 2.

EXAMPLE 2.
4
min f(z) = 3_ a7,
i=1
4
st.g(z) =6— 2%2 <0.
i=1

x* = (1.224745,1.224745, 1.224745, 1.224745)7

f(") = 9.
EXAMPLE 3.

3
min f(z) = inzxizﬂ + z124,
i=1

4
st.gi(z) =4— sz <0,
i=1
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Table 3. Computational results for Example 4

k 0 1 3 5 8
ry; O 7.905995E-02 O 0 0
r2 0.25 0.05 0 0 0
zz3 O 0.1581139 1.017791 1.767791 2
f 0.1666667 —0.13381 —1.017791 —1.767791 -2
4 .
go(a) = 1= 3 (=11 < 0
=1

o* = (1.240023,0.753253, 1.259977, 0.746746)",
f(z*) = 3.515915.

EXAMPLE 4.

. 4 3
min f(z) = é(ac% — 1w + 13)% — w3,
stz >0,z3 <2

Tt = (07 07 2)T7 f(IE*) =-2
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