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Abstract. The sequential quadratic programming method developed by Wilson, Han and Powell may
fail if the quadratic programming subproblems become infeasible or if the associated sequence of
search directions is unbounded. In [1], Han and Burke give a modification to this method wherein the
QP subproblem is altered in a way which guarantees that the associated constraint region is nonempty
and for which a robust convergence theory is established. In this paper, we give a modification to
the QP subproblem and provide a modified SQP method. Under some conditions, we prove that
the algorithm either terminates at a Kuhn–Tucker point within finite steps or generates an infinite
sequence whose every cluster is a Kuhn–Tucker point. Finally, we give some numerical examples.
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1. Introduction

We consider the following nonlinear programming problem

min f(x);
(1.1)

s.t. g(x) 6 0;

where function f : Rn �! R1 and g : Rn �! Rm are all continuously differen-
tiable. The SQP method generates a sequencexk converging to the desired solution
by means of solving the quadratic programming problem

min5f(x)Td+
1
2
dTHd;

s.t. g(x) + g0(x)d 6 0; (1.2)

d 2 Rn;

iteratively, where H 2 Rn�n is symmetric positive definite. The iteration then has
the form

xk+1 := xk + �kdk;

where dk solves (1.2) and �k is a step length chosen to reduce the value of a merit
function for (1.1).
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The SQP method may fail if the quadratic programming subproblems (1.2)
become infeasible or if the associated sequence of search directions is unbounded.
In [1], Han and Burke give a modification to this method wherein the QP subprob-
lem (1.2) is altered in a way which guarantees that the associated constraint region
is nonempty for each x 2 Rn and for which a reasonably robust convergence
theory is established.

Our method is similar to the method of Burke and Han [1] in that it can overcome
some difficulties associated with the infeasibility of the QP subproblems (1.2). In
this paper, we give a modification to (1.2) and provide a modified SQP method.
Under some conditions, we prove that the algorithm either terminates at a Kuhn–
Tucker point within finite steps or generates an infinite sequence whose every
cluster is a Kuhn–Tucker point.

In [10], Martin proved that every Kuhn–Tucker point of (1.1) is a global mini-
mum of (1.1) if and only if Problem (1.1) is KT-invex. Therefore, if Problem (1.1)
is KT-invex, then the proposed algorithm in this paper either terminates at a global
minimum of (1.1) within finite steps or generates an infinite sequence whose every
cluster is a global minimum of (1.1) under some conditions.

This paper is organized as follows. In Section 2, the concept of pseudo direc-
tional derivatives is given. Section 3 gives some lemmas. In Section 4, we discuss
the modified QP subproblems. In Section 5 the proposed algorithm is stated. The
global convergence theory for the method is presented in Section 6, and some
numerical examples are given in the last section.

The notation that we employ is standard. However, a partial list of definitions
is provided for the reader’s convenience.

(1) f 0(x; d) := lim�#0(f(x+ �d)� f(x))=�

(2) g0(x) is the Frechet derivative of g at x.

(3) Let k � k1 denote the maximum norm on Rn, i.e. kxk1 := maxfjxj j : j =
1; 2; � � �; ng

(4) Let M = f1; 2; � � �;mg, N = f1; 2; � � �; ng, e = (1; 1; � � �; 1)T 2 Rn.

2. Continuous Approximation of Directional Derivatives

Let

g0(x) = 0;

�(x) = maxfgj(x) : j 2M [ f0gg: (2.1)

Then the directional derivatives of �(x) in any direction d 2 Rn is

�0(x; d) = max
j2I0(x)

f5gj(x)
T dg; (2.2)
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where I0(x) = fj : gj(x) = �(x); j 2M [ f0gg.

In general, �0(x; d) is not continuous. In [4], M. S. Bazaraa provides the fol-
lowing continuous approximation of �0(x; d)

��(x; d) = max
j2I0(x)

fgj(x) +5gj(x)
T dg � �(x); (2.3)

��(x; d) are called pseudo directional derivatives of �(x) at x in the direction d.
It can be proven that ��(x; d) is a continuous function on Rn �Rn.

LEMMA 2.1[6]. For any x; d 2 Rn, we have

��(x; d) > �0(x; d) (2.4)

and there exist � > 0 such that

��(x; td) = �0(x; td); 8t 2 [0; �]: (2.5)

LEMMA 2.2[6]. For any x 2 Rn, ��(x; �) is a convex function on Rn.

3. Some Lemmas

Let

	(x) = maxfgj(x) : j 2Mg: (3.1)

For all x; d in Rn, let 	�(x; d) denote the following first-order approximation to
	(x+ d):

	�(x; d) = maxfgj(x) +5gj(x)
T d : j 2Mg: (3.2)

Let the functions 	(x; �), 	0(x; �) : Rn �R �! R be defined, for all � > 0, by

	(x; �) = minf	�(x; d) : kdk1 6 �g (3.3)

	0(x; �) = maxf	(x; �); 0g : (3.4)

REMARK. (3.3) is equivalent to the following linear programming, which we
denote by LP (x; �)

minfz : gj(x) +5gj(x)
T d 6 z; j 2M; kdk1 6 �g:

Let

�(x; �) = 	(x; �) �	(x); (3.5)

�0(x; �) = 	0(x; �)�	(x): (3.6)
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Let the set F be defined by

F = fx : gj(x) 6 0; j 2Mg = fx : 	(x) 6 0g (3.7)

and let F c denote the complement of F , i.e.

F c = fx : 	(x) > 0g (3.8)

DEFINITION 3.1[1]. The Mangasarian–Fromowitz constraint qualification
(MFCQ) is said to be satisfied at a point x 2 Rn, with respect to the underly-
ing constraint system g(x) 6 0, if there is a z 2 Rn such that

5gi(x)
T z < 0; i 2 fi : gi(x) > 0; i 2Mg:

LEMMA 3.1. For all x in F c, if the MFCQ is satisfied at x. Then for all � > 0,
we have

�(x; �) < 0:

Proof. Let

I(x) = fi : gi(x) > 0; i 2Mg:

For all x 2 F c and � > 0, by Definition 3.1, there exists d 2 Rn and kdk1 � �

such that

gi(x) +5gi(x)
Td < gi(x); i 2 I(x);

gi(x) +5gi(x)
Td < 0; i 2M n I(x):

So

	�(x; d) < 	(x):

Hence

	(x; d) < 	(x) ; i.e �(x; d) < 0: E

LEMMA 3.2[3]. 	(x; �) : Rn �R+ �! R is continuous.

COROLLARY 3.3. 	0(x; �); �(x; �) and �0(x; �) are all continuous on Rn �
R+.

LEMMA 3.4. For all x in F c, � > 0, if �(x; �) < 0, then �0(x; �) < 0:
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Proof. For all x 2 F c, we have 	(x) > 0: By (3.4), (3.5) and (3.6), we have

�0(x; �) = 	0(x; �)�	(x)

= maxf	(x; �)�	(x);�	(x)g

= maxf�(x; �);�	(x)g

< 0 :

4. The Modified SQP Subproblems

Given x 2 Rn and � > 0, we define D(x; �; �) to be the set

D(x; �; �)

= fd 2 Rn : gj(x) +5gj(x)
T d � 	0(x; �); j 2M; kdk1 6 �g

where � > �. If d� 2 Rn is the solution to LP (x; �), then d� 2 D(x; �; �). So
D(x; �; �) is nonempty. We now describe the modification to the subproblem (1.2).
The subproblem (1.2) is simply replaced by the convex program Q(x;H; �; �)

min5f(x)Td+
1
2
dTHd;

s.t. gj(x) +5gj(x)
T d 6 	0(x; �); j 2M;

kdk1 6 �:

These convex programs have the following properties.

LEMMA 4.1. Letx 2 Rn, 0 < � < �, andH 2 Rn�n be symmetric and positive
definite. If the MFCQ is satisfied at x, then
(1) The convex program Q(x;H; �; �) has a unique solution d where d satisfies
the following K-T conditions: There exist vectors U = (u1; u2; � � �; um)

T , V =
(v1; v2; � � �; vn)

T and L = (l1; l2; � � �; ln)
T such that

(a) gj(x) +5gj(x)
Td 6 	0(x; �); j 2M; kdk1 6 �;

(b) U > 0; V > 0; L > 0;

(c) 5f(x) +Hd+ g0(x)TU + V � L = 0;

(d)
Pn

j=1 uj(gj(x) +5gj(x)
T d�	0(x; �)) = 0;

V T (d� �e) = 0; LT (�d� �e) = 0:
(2) If d = 0 is the solution to Q(x;H; �; �), then x is a K-T point of (1.1).

Proof. (1) Since H is symmetric and positive definite, this follows from the
elementary theory of convex programming.
(2) Suppose that 	0(x; �) > 0, we have that x 2 F c. By Lemma 3.1, we have
0 =2 D(x; �; �), which contradicts that d = 0.
Hence

	0(x; �) = 0:
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By (1), we have that x is a K-T point of (1.1). E

LEMMA 4.2. For all x 2 F c, 0 < � 6 �. If the MFCQ is satisfied at x, then for
all d 2 D(x; �; �), we have

��(x; d) 6 �0(x; �) < 0:

Proof. For all x 2 F c;�(x) = 	(x): For all d 2 D(x; �; �), we have

��(x; d) = max
j2I(x)

fgj(x) +5gj(x)
T dg �	(x)

6 	0(x; �) �	(x)

= �0(x; �) < 0 ;

where I(x) = fj : gj(x) = 	(x); j 2Mg: E

LEMMA 4.3. For all x 2 F; 0 < � 6 �; d 2 D(x; �; �); we have

��(x; d) = 0:

Proof. For all x 2 F , we have that 	0(x; �) = 0 and �(x) = 0: For all
d 2 D(x; �; �), we have

gj(x) +5gj(x)
T d 6 0; j 2M:

Hence

��(x; d) = max
j2I0(x)

fgj(x) +5gj(x)
T dg �	(x) = 0

where I0(x) = fj : gj(x) = 0; j 2M [ f0gg: E

5. Algorithm

Now we state the basic algorithm as follows.

Algorithm A.
Initialization: Choose x0 2 Rn; �0 > 0; � > 0; 0 < �l < �r < �; �0 2

[�l; �r]; �0 2 (�0; �], � a compact set of symmetric and positive definite matrices,
H0 2 �.

Have (xi; �i;Hi; �i; �i), obtain (xi+1; �i+1;Hi+1; �i+1; �i+1) as follows:
(1) Compute 	(xi; �i);	0(xi; �i).

(2) Let di be the solution to the convex program Q(x;Hi; �i; �i). If di = 0,
stop.

(3) If 5f(xi)
Tdi + �i�

�(xi; di) � �dTi Hidi, set �i+1 := �i; otherwise set

�i+1 := max

(
5f(xi)

T di + dTi Hidi

���(xi; di)
; 2�i

)
:
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(4) Set xi+1 := xi + �idi, where �i 2 [0; �] and satisfying

P�i+1(xi+1) 6 min
06�6�

P�i+1(xi + �di) + �i;

where f�ig is a sequence of nonnegative numbers satisfying

1X
i=0

�i <1:

(5) Choose Hi+1 2 �; �i+1 2 [�l; �r]; �i+1 2 (�i+1; �]:

REMARKS. (1) The procedure for choosing the step length in step (4) of the
Algorithm A was introduced in [2].

(2) The merit function in step (4) is

P�(x) := f(x) + ��(x):

(3) In step (5) one is allowed to adjust the parameters �i and �i iteratively.
Therefore it is possible to incorporate a trust region like strategy. However, our
proof theory does not allow the radius of these trust regions to either decrease to
zero or become unbounded.

6. Global Convergence

In this section we establish the global convergence of Algorithm A.

LEMMA 6.1. Let d 2 Rn be the solution to Q(x;H; �; �) for some x 2 Rn

and some symmetric and positive definite matrix H 2 Rn�n. Then the directional
derivative P 0

�(x; d) satisfies the inequality

P 0
�(x; d) 6 5f(x)Td+ ���(x; d)

6 �dTHd�

0
@ mX

j=1

uj

1
A �0(x; �) + ���(x; d); (6.1)

where U = (u1; u2; � � �; un)
T is the Lagrange multiplier of Q(x;H; �; �).

Proof. If d = 0, the result holds, trivially. Thus, suppose that d 6= 0, by Lemma
2.1, we have

P 0
�(x; d) = 5f(x)Td+ ��0(x; d)

6 5f(x)Td+ ���(x; d):

By Lemma 4.1, we have

5f(x) = �[Hd+ g0(x)TU + V � L]:
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Hence,

P 0
�(x; d) 6 �dTHd+

mX
j=1

uj(gj(x)�	
0(x; �))��(V +L)T e+�	�(x; d)

6 �dTHd+

0
@ mX

j=1

uj

1
A (	(x)�	0(x; �)) + ���(x; d)

= �dTHd�

0
@ mX

j=1

uj

1
A �0(x; �) + ���(x; d): E

REMARK 6.1. By Lemma 6.1 and observations made in the previous section,
step (1), (2) and (3) of the Algorithm A assure us that

P 0
�i+1

(x; d) 6 5f(xi)
T di + �i�

�(xi; �i)

6 �dTi Hidi

< 0:

It is not difficult to verify that the criteria for specifying�i in step (4) are consistent.

THEOREM 6.1. Suppose that the MFCQ is satisfied at x0 2 Rn. Let �l > 0 and
set F := fx : g(x) 6 0g. Then there is a neighborhood N(x0) of x0 such that

(1) the MFCQ is satisfied at every point in N(x0),

(2) if x0 2 F , then 	0(x; �) = 0 for all x 2 N(x0); � > �l, and

�0(x; �)

��(x; d)
6 1;

for all x 2 N(x0) n F; � > �l, where d is a solution of Q(x;H; �; �),

(3) if x0 2 F , then

sup

8<
:

mX
j=1

uj : H 2 �; x 2 N(x0); � 2 [�l; �r]; � 2 (�; �]

9=
; <1;

where � � Rn�n is any compact set of symmetric positive definite matrices and
0 < �l < �r < �.

Proof. The proof of this theorem is similar to that of Theorem 5.1 in [1]. E

COROLLARY 6.1. Let x0 2 Rn be such that g(x0) 6 0, and the MFCQ is
satisfied at x0. Also let 0 < �l < �r < � and let � be a nonempty compact set of
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n� n symmetric positive definite matrices. There then is a neighborhood U of x0
and a constant K > 0 such that

0 6
5f(x)Td+ dTHd

���(x; d)
6

�Pm
j=1 uj

�
�0(x; �)

��(x; d)
� K;

for all (x; �; �;H) 2 U � �(�l; �r; �) � � where �(�l; �r; �) := f(�; �) : � 2
[�l; �r]; � 2 (�; �]g:

LEMMA 6.2. Let xk �! x; Hk �! H; �k �! �; �k �! �. Then dk �! d,
where dk is a solution to Q(xk;Hk; �k; �k) and d is a solution to Q(x;H; �; �).

Proof. Suppose that fdkg does not converge to d, then there exists a subsequence
fdsg � fdtg that converges to d0 6= d. By Corollary 3.3, we have

	0(xs; �s) �! 	0(x; �) (s �!1):

For all d 2 D(x; �; �), there exists dm 2 D(xs; �s; �s) such that

dm �! d (m �!1):

Since ds is a solution to Q(xs;Hs; �s; �s), we have

5f(xs)
T ds +

1
2
dTs Hsds � 5f(xs)

Tdm +
1
2
dTmHsdm:

Let s �! +1; m �! +1; we have

5f(x)T d0 +
1
2
d0
T
Hd0 6 5f(x)Td+

1
2
dTHd:

This contradicts that d is the single solution to Q(x;H; �; �):

THEOREM 6.2. Assume that the the MFCQ is satisfied. Then, any sequence xk
generated from the algorithm A either terminates at a Kuhn–Tucker point of (1.1)
or any accumulation point is a Kuhn–Tucker point of (1.1).

Proof. If the sequence fxkg terminates at x finitely, by Lemma 4.1 , x is a K-T
point of (1.1). Thus we assume that fxkg is an infinite sequence. Let x be a cluster
point of fxkg. There is no loss of generality in assuming xk �! x, Hk �! H ,
�k �! � , �k �! �. By Corollary 6.1, there is a constant � > 0 such that

�k 6 � k = 1; 2; � � �:

There is no loss of generality in assuming �k = � for all k = 1; 2; � � �: Let dk be
a solution to Q(xk;Hk; �k; �k) and d a solution to Q(x;H; �; �), by Lemma 6.2,
we have dk �! d. If d = 0; then x is a K-T point of (1.1) by Lemma 6.2. Suppose
that

d 6= 0:
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Let � 2 [0; �] be chosen such that

P�(x+ � d) = min
0��6�

P�(x+ �d):

By Remark 6.1, we have

P�(x+ � d) < P�(x):

Set

� = P�(x)� P�(x+ � d):

Since

xk + �dk �! x+ � d;

it follows that, for sufficiently large k, we have

P�(xk + �dk) + �=2 < P�(x): (6.2)

However, by

P�(xk+1) < P�(xk) + �k;
1X
i=k

�i < �=2;

for sufficiently large k we have

P�(x) < P�(xk+1) +
1X

i=k+1

�k

6 min
06�6�

P�(xk + �dk) + �k +
1X

i=k+1

�i

< P�(xk + �dk) + �=2;

which contradicts (6.2). Hence,

d = 0;

and x is a Kuhn–Tucker point of (1.1). E

DEFINITION 6.1[10]. Problem (1.1) is said to be KT-invex, if there exists a
function h : Rn �Rn ! Rn such that x; u 2 F , then

(1) f(x)� f(u)�5f(u)Th(x; u) > 0;

(2) if gi(u) = 0; i = 1; 2; � � �;m; then �5 gi(u)
Th(x; u) > 0;
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where F is the feasible set of Problem (1.1).

In [10], Martin proved that every Kuhn–Tucker point of Problem (1.1) is a global
minimum of (1.1) if and only if Problem (1.1) is KT-invex. Therefore we have:

COROLLARY 6.2. Assume that the MFCQ is satisfied. If Problem (1.1) is KT-
invex, then any sequence fxkg generated from the Algorithm A either terminates
at a global minimum of (1.1) or any accumulation point is a global minimum of
(1.1).

7. Some Discussions and Numerical Examples

In this section we discuss further refinements of the algorithm proposed above to
accommodate practical calculations, and give some numerical examples to show
the success of the proposed method.

(1) Updating of Hi is most effectively done by the quasi-Newton methods. The
matrix Hi is intended to be an approximation of the Hessian of the Lagrangian

L(x; �) = f(x) +
nX
i=1

�igi(x)

at the point (x; �) = (xi; �i). The matrix Hi is updated by the BFGS formula [9].
(2) If kdik is sufficiently small, the current point xi is considered to be a Kuhn–

Tucker point of (1.1), and the algorithm stops in step 2.
(3) An equality constraint h(x) = 0 exists in the original problem, it is most

easily handled as two corresponding inequalities h(x) 6 0 and h(x) > 0, and we
can apply the above algorithm.

(4) An example is given in the following in order to demonstrate situations
in which the algorithm proposed in this paper succeeds while the SQP method
developed by Wilson, Han and Powell can fail if the initial value of x is set to 3.

minx;

s.t. x 6 1;

x2
> 0:

NUMERICAL EXAMPLES. Finally we show the behavior of Algorithm A on
some typical test problems. In the experiments below, the algorithm parameters
were set as follows: �0 = 100; � = 1; �l = 1; �r = 2; � = 3 and H0 = I 2 Rn�n.
A C test program of Algorithm A with BFGS update was written and applied to
the following problems.

EXAMPLE 1.

min f(x) = x�
1
2
+

1
2

cos2 x;



204 GUANGLU ZHOU

Table 1. Computational results for Example 2

k 0 1 2 3 4 8

x1 2 1.5762621 1.3411281 1.2534775 1.2399127 1.2247615
x2 2 1.5762621 1.3411281 1.2534775 1.2399127 1.2247615
x3 2 1.5762621 1.3411281 1.2534775 1.2399127 1.2247615
x4 2 1.5762621 1.3411281 1.2534775 1.2399127 1.2247615
f 32 24.693 12.9402 9.874752 9.454192 9.000488

Table 2. Computational results for Example 3

k 0 1 3 5 9
x1 2.5 2.136197 1.397261 1.260670 1.250843
x2 1.5 0.8936609 0.8288156 0.7419351 0.7500085
x3 0 0.3638035 1.102739 1.23933 1.249157
x4 0 0.6063391 0.6711844 0.958065 0.7499915
f 14.0625 5.476474 3.603782 3.516288 3.515627

s.t. x > 0:

x� = 0; f(x�) = 0:

If we use Algorithm A, then the solution can be obtained at the 2nd iteration
under initial point x0 = 2.

EXAMPLE 2.

min f(x) =
4X

i=1

x2
i ;

s.t. g(x) = 6�
4X

i=1

x2
i 6 0:

x� = (1:224745; 1:224745; 1:224745; 1:224745)T ;
f(x�) = 9:

EXAMPLE 3.

min f(x) =
3X

i=1

x2
ix

2
i+1 + x1x4;

s.t. g1(x) = 4�
4X

i=1

xi 6 0;
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Table 3. Computational results for Example 4

k 0 1 3 5 8
x1 0 7.905995E-02 0 0 0
x2 0.25 0.05 0 0 0
x3 0 0.1581139 1.017791 1.767791 2
f 0.1666667 �0.13381 �1.017791 �1.767791 �2

g2(x) = 1�
4X

i=1

(�1)i+1xi 6 0:

x� = (1:240023; 0:753253; 1:259977; 0:746746)T ;
f(x�) = 3:515915:

EXAMPLE 4.

min f(x) =
4
3
(x2

1 � x1x2 + x2
2)

3
4 � x3;

s.t.x > 0; x3 6 2:

x� = (0; 0; 2)T ; f(x�) = �2:
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